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-----------------------------------------------------------------------ABSTRACT---------------------------------------------------------- 
The fast implementation of elliptic curve cryptosystems relies on the efficient computation of scalar multiplication. As 
generalization of double base number system of a number k to multi-base number system (MBNR) provides a faster 
method for the scalar multiplication is most important and costly operation (in terms of time) in ECC, there is always a 
need of developing a faster method with lower cost. In this paper we optimize the cost of scalar multiplication using 
halving and add method instead doubling and tripling methods. The cost is reduced from 40% to 50% with respect to the 
other fastest techniques  
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1. INTRODUCTION 

Public-key cryptography has been widely studied and 
used since 1975 when Rivest, Shamir, and Adleman 
invented RSA public key cryptography. This system 
heavily depends on integer factorization problem (IFP) 
using big key bits such as 1024 bits and 2048 bits. Later on 
Deffie- Hellman in [8] developed the public key exchange 
algorithm using the discrete logarithm problem (DLP). El 
Gamal also used DLP in encryption and digital signature 
scheme. Koblitz and Miller [13,14], independently used 
EC in cryptography using elliptic curves discrete logarithm 
problem (ECDLP) . ECC provide a high level of security 
with much smaller keys in comparison to other popular 
cryptosystems based on integer factorization. Improving 
the efficiency of scalar multiplication in EC is one of the 
main interests of many researchers in the field of 
cryptography. For this reason, ECC offers a security level 
equivalent to RSA and DSA while using a much smaller 
key size. 
In any implementation of ECC primitives, scalar 
multiplication is the computationally dominant 
operation. Several methods have been proposed in the 
literature to speed-up point multiplication, which use 
various representations of the base point (affine 

coordinates, projective coordinates), various 
representations of the scalar (binary, ternary, NAF, w-
NAF), and various curve operations (additions, 
doublings, halving, tripling). The computational cost 
(timing) of these curve operations depends on the cost of 
the arithmetic operations that have to be performed in 
the underlying field.  
Many researchers have given more attention to develop 
the proposed ECC algorithms and improve their 
efficiency. Improving the efficiency of scalar 
multiplication in EC is one of the main interests of many 
researchers in the field of cryptography. 
Computationally the most expensive operation in ECC is 
Scalar Multiplication namely given an integer k, and a 
point P on an elliptic curve curve, the computation of kP      
= P + · · · + P  is called scalar multiplication of point P 
by scalar k. A key factor for its fast implementation is 
how to compute the scalar multiplication kP efficiently. 
Generally the integer k is represented in binary form and 
the double and add method is applied to calculate kP. It 
is computed by series of doubling (ECDBL) and addition 
(ECADD) operation of the point P. A point 
multiplication is the first sequence of additions, several 
multiplications, squaring and inversion on a finite field. 
A strategy that has gained lots of attention in recent 
years is the use of representations of number k based on 
double-base and multi-base chains. The use of the so-
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called Double Base Number System (DBNS) for 
cryptographic applications was first proposed by 
Dimitrov et al. in [3]. In the setting of ECC, double-base 
chains were first applied to the computation of scalar 
multiplication by Dimitrov et al. [4], and later extended 
to multi base chains by P.Longa et.al [11]. Dimitrov, 
Imbert, and Mishra [6] introduced double base chains 

biai
id 32 , where  }1,1{−∈id   with the new restrictions 

...321 ≥≥≥ aaa and ...321 ≥≥≥ bbb  allowing a 

Horner-like evaluation of kP with only ia doubling and 

ib  tripling. The double base number system is highly 
redundant. 
 Here we   discuss   the multi base representations 
(MBNR) which are even shorter and more redundant 
than the DBNS. The number of representations   grows 
very fast with the number of base elements. The new 
Multi base Non-Adjacent Form (mbNAF) method was 
introduced and shown to speed up the execution of the 
scalar multiplication with an efficient use of multiple 
bases to represent the scalar. We present new 
improvements in the point operation formulae. 
Specifically, we reduce further the cost of composite 
operations such as quintupling in MBNR base {2, 3, 5 } 
and septupling in MBNR base   
 {2, 3, 7} of a point, which are relevant for the speed up 
of multi base methods.  
        In this paper, we propose a new multi-base chain 
representation for scalars to achieve faster scalar 
multiplication. In an earlier papers we have discussed a 
multi-base representation of a scalar in the base elements 
2,3 and 7 [15 ] . The authors in [10,12,15 ]  have 
proposed an halving method instead of doubling and 
quadrupling. In this method the scalar multiplication is 
done with a faster speed upto 39%  [14 ] are even upto 
50%[12] . Adopting this technique we modify the multi-
base chain representation of scalar k in terms of 
monotonic decreasing powers of 1/2, 3 and 7. With this 
method, we remove point doubling and quadrupling and 
use point halving instead, while maintaining the tripling 
and septupling point operations.  
  The paper is organized as follows: In the next section, 
we recall some related work regarding the point (scalar) 
multiplication. In Section 3 some   basic facts about 
elliptic curves and their equations developed on different 
fields. In Section 4 we introduce the double-base number 
system and double chain along with algorithm for 
computation. In Section 5 we introduce the concept of 
multi-base number system using the septupling 
algorithm and we propose a new scalar multiplication 
algorithm based on the multi-base number system. In the 
next Section 6 we have discussed   the point halving 
method for scalar multiplication. We present numerical 
results and compare our algorithm with other algorithms 
discussed in [ 15], [18 ] . 
 
2. RELATED WORK  
Doche et al. [6] introduced a new method that also finds 
double-base chains without using the "Greedy" 

algorithm, although using a somewhat more complex 
search-based approach in comparison with the basic 
Multi-base NAF. The cost of this method is comparable 
to (2,3)NAF method, but slightly higher than that 
achieved by (2,3,5)NAF. More important, the proposed 
Multi-base NAF method presents even lower costs in all 
the cases, with bases (2,3) , (2,3,5) and (2,3,7). The 
improvement is especially significant in the case without 
pre-computations, which makes this method especially 
interesting for applications on constrained devices. M. 
Ciet  et.al [1], discussed a ternary / binary approach 
making use of the efficient triple (3P) and double (2P) of 
point P for fast scalar multiplication. A similar idea was 
suggested in V.S Dimitrov et.al [7]. On the other hand, 
point halving was proposed independently by Knuden 
[12] and Schroeppel [17]. They suggested that point 
doubling in the double-and-add method can be replaced 
by a faster point halving operation. The idea was to 
replace almost all point doublings in double-and-add 
methods with a potentially faster operation called point 
halving. Knudsen [12] presented some rough analysis 
which suggests that halving methods could be 39% faster 
than doubling methods ([14] claims a 50% 
improvement), but these claims have not been supported 
by experimental evidence or by detailed analysis. 

3. ELLIPTIC CURVE 
EC-based cryptosystems can attain equivalent security 
levels to RSA with significantly smaller cryptographic 
parameters. For instance, it is widely accepted that 160-
bit ECC offers security equivalent  to 1024-bit RSA. 
This significant difference makes ECC especially 
attractive for applications in constrained environments as 
shorter key sizes are translated to less storage 
requirements and reduced computing times. 
 An elliptic curve over a field pF  is defined in terms of 

the solutions to an equation in pF . The form of the  

equation defining an elliptic curve over pF  differs 
depending on whether the field is a prime finite field or a 
characteristic 2 finite field. 
 
An elliptic curve over a finite field GF field K (Galois 
field  )  is defined by an equation 

 64
2

2
3

31
2: axaxaxyaxyayE +++=++

     (1)                      
where Kaaaaaa ∈6543,21 ,,,, are the parameters of 

the curve and ∆≠∆ ,0 being the discriminate of the 

curve E. In the case of binary field mFK 2= , the 
Weierstrass equation of  non- super singular curve can 
be simplified to the form. 

        baxxxyy ++=+ 232
                              (2) 

  Where mFba 2, ∈  and 0≠=∆ b .                                  

 Let pF   be a prime finite field where  p is an odd prime 

number, and  pFba ∈,  satisfying  
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        0274 23 ≠+ ba (modp).                         (3) 
Then an elliptic curve E(F p) over F p with parameters 

pFba ∈,  p consists of set  points  P = (x,y) satisfying 
the equation:   
          baxxy ++= 32 (modp)                               (4) 
Together with an extra point O called the point at 
infinity. The equation baxxy ++= 32  (mod p)   is  
called the defining equation of E(F p). For a given point

),( pp yxP = , px  is called the x-coordinate of P, and 

py  is called the y-coordinate of P. The addition of two 
points on the curve generates a third point on the curve. 
  
3.1.Arithmetic Operations in an EC (Elliptic Curve) 
 
3.1.1.Point addition 
Point addition is defined as taking two points along a 
curve E and computing where a line through them 
intersects the curve. We use the negative of the 
intersection point as the result of the addition. Point 
addition is the addition of two points P( ), 11 yx  and Q(

), 22 yx  on an elliptic curve to obtain another point R(

), 33 yx  on the same elliptic curve. We can obtain point 
addition R as P+Q  
  
                axxx ++++= 21

2
3 λλ  

                13313 )( yxxxy +++= λ  

              )/()( 2121 xxyy ++=λ  
3.1.2 Point Doubling 
Point doubling is the addition of a point  on the elliptic 
curve to itself to obtain another point  on the same 
elliptic curve(i.e. Q=2P). If P is ( ), 11 yx  and Q=2P= (

), 33 yx then coordinates of Q are given as . 
  
                ax ++= λλ2

3  

                13313 )( yxxxy +++= λ  

                111 xyx +=λ  
  
3.1.3 Point Halving 
Point halving can be seen as the reverse operation of 
point doubling [2]. We can define the elliptic curve point 
halving as: Let ),(),,( vuQyxP ==  be  points that 
belong to the curve, then we need to compute P such that 

PQ 2= using the following equations: 
                     xyx /+=λ                                     (5)                                                       

                     au ++= λλ2                                 (6)                                      
                      )1(2 ++= λuxv                            (7)                                         
The point ),( yxP =  is computed by solving the 

Eq.(6) for λ , Eq.(7) for x, and finally Eq.(5) for y. Point 

multiplication methods based on point halving share 
strategy with τ -adic methods on Koblitz curves in the 
sense that point doubling is replaced by a potentially 
faster operation. As with the efficiently computable 
endomorphism in, the improvement is not as dramatic as 
that obtained with methods for Koblitz curves, although 
halving applies to a wider class of curves. We restrict 
our attention to elliptic curves E over binary fields mF2

defined by the equation baxxxyy ++=+ 232   
where a, b ∈ mF2 , b = 0.  The algorithm for computing 
½ P (x, y) from P ( u ,v) is given below 
                            Algorithm 

 Input:  ),(2 vuP =  
 Output: ),( yxP =  

   Solve au +=+ λλ2    for λ  
     find )1( ++= λvuT  

     If 1)( =TTr  then λλ =  , Tx =  to t  do. 
           else 

1+= λλ  , uTx +=  

   find 2xxy += λ  
         return ).,( yx  
 

4. DOUBLE BASE CHAIN (DBC) 
In this section, we present the main properties of the 
double-base number system, along with some numerical 
results in order to provide the reader with some intuitive 
ideas about this representation scheme and the difficulty 
of some underlying open problems. Double-base number 
systems have been suggested as a way to speed up scalar 
multiplication on elliptic curves. The double-base 
number system (DBNS) is a representation scheme in 
which every positive integer, n,   is represented as the 
sum or difference of 2-integers, that is, numbers of the 
form ba32 . 
   A double-base chain for k is an expansion of the form 

            ∑
=

=
n

i

ba
i

iidk
1

32                                (8) 

With   where n is the length of the expansion 
}1,1{−∈id  and such that the exponents ),( ii ba  which 

is non negative integer )0,( ≥ii ba  number decrease for 
the product order.   
This Double-Base Chain (DBC) representation is highly 
sparse and, consequently, permits to reduce the 
Hamming weight of the expansion for the scalar. With 
the introduction of efficient tripling formulae, these 
representations using ternary bases greatly reduce the 
execution time of scalar multiplication. 
For example, a double-base chain computing 4,012,174 
is given as follows. In order to compute 4,012,174P, one 
uses a Horner-like algorithm by considering the 
differences between consecutive pairs of exponents and 
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by applying doubling and tripling and additions and 
subtractions accordingly. Ciet et al [1] have proposed a 
ternary / binary approach for fast ECC scalar 
multiplication. It makes use of the efficient doubling 
(2P), tripling (3P), and quadrupling (4P) of a point P. 
 

ALGORITHM:  Double-Base Scalar Multiplication

Input: An integer ∑ =
= m

i
ba

i
iidk

1
32 , 

}1,1{−∈id   

And   such   that  0...321 ≥≥≥≥ maaaa ,

0...321 ≥≥≥≥ mbbbb  ,  and a point 

)( 2 mFEP ∈ . 

Output : the point )( 2 mFEkP ∈   

                 PdZ 1←  

                   for 1,...,1 −= mi  do  

                      
1

1

+

+

−←
−←

ii

ii

bbv
aau

 

            if  0=u then  

                     PdZZ i
v

1
1 )3(3 +

− +←  

                   Else 

                     ZZ
u

2
)1(

4
−

←  

 If )(mod0 Zu ≡ then  

                          
                    PdZZ i 14 ++←                         

                        else  

                  PdZZ i 12 ++←  

 

                             return Z 

 

Example: 
011425575869711 32323232323232174,012,4 −++−−−=

 
Later, [9] extended this approach, called Extended DB, 
to applications that can afford pre computations. In this 
case, id  in (6) is allowed to have any value from a set of 
pre computed digits, where the elements are prime 
numbers other than 3. Finding short expansions using 

}32{ ii ba terms has been defined as a difficult problem 

on its own. [4] proposed to solve that problem by 
establishing “efficient” maximum bounds a -max and

−b max  for the powers of 2 and 3, respectively, and 
then executing an exhaustive search for closest terms

}32{ ii ba   (referred to as “Greedy” algorithm). In the 
next section multi-base (Triple base) number system is 
shown using the radix 7 to the previous approach and 
removes the shortcoming of the double base (DB). 
 

Algorithm 

GREEDY AlGORITHM 

 while 0>k  

           let z be the largest integer ba32  

            Output(a ,b) 

              replace k by k-z 

                 0←− zk   

  else 

                    end. 

 

5. MULTIBASE NUMBER SYSTEM (MBNS) 
 
As a generalization of double base chains, multi-base 
number system is very suitable for efficient computation 
of scalar multiplications of elliptic curves because of 
shorter representation length and less Hamming weight. 
In this paper, combined with the given formulas for 
computing the 5-fold of an elliptic curve point P, an 
efficient scalar multiplication algorithm of elliptic curve 
is proposed using 2, 3 and 7 as bases of the multi-based 
number system. The algorithms cost less compared with 
Shamir's trick and interleaving with NAF method.  
The multi base representation   is even shorter and more 
redundant than the DBNS. The same 160 bit integer can 
be represented using around 15 terms using a triple base 
B= {2, 3, 7}. The multi base representation of a number 
using a triple base B= {2, 3,7} is even shorter and sparse 
as compared to its representation using the triple base 
{2,3,5}. 
In this article, unless otherwise stated, by a multi base 
representation of k, we mean a representation of the 
form. 
 
           iii cba

ii dk 732∑=                                       (9)                           
 
Where }1,1{−∈id and the terms of the form iii cba 732  
will be termed as 3-integers. A general multi-base 
representation although very short is not suitable for a 
scalar multiplication algorithm. So we include a special 
representation with restricted exponents  
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ALGORITHM:   Multi-Base Scalar Multiplication 

 

Input: An integer ∑ =
= m

i
cba

i
iiidk

1
732 , 

}1,1{−∈id
  

     And such that 

0...321 ≥≥≥≥ maaaa ,

0...321 ≥≥≥≥ mbbbb  ,  

0...321 ≥≥≥≥ mcccc  and, and a point 

)( 2 mFEP ∈ . 

Output : the point )( 2 mFEkP ∈   

                 PdZ 1←  

                   for 1,...,1 −= mi  do  

                      

1

1

1

+

+

+

−←
−←
−←

ii

ii

ii

ccw
bbv
aau

 

            if  0=u then  

                     ZZ w7←  

            if 0≠v  then  

                   PdZZ i
v

1
1 )3(3 +

− +←               // TA 

used here 

                         else  

                    PdZZ i 1++←                          

                        else  

               

PdZZ
ZZ

ZZ
ZZ

i

u

v

w

1

1

2
2
3
7

+

−

+←
←

←
←

     // 

DA is used  

       Return Z                     

  

 

Using this algorithm we have developed   triple base 
representation of some numbers as examples. 
 

01120210128336443451 732732732732732732174,012,4 +++++=
  

0016001402110310149246362 732732732732732732732716,288,5 ++++++=
 

00180112139346453 732732732732732856,816,6 ++++=
 
 It may be noted that there can be many representation of 
the same number but one has to be careful in shorting the 
sparest expansion. However, this algorithm provides a 
short and sparse triple base representation. 
 

6. PROPOSED APPROACH  
We propose a new method to speed up scalar 
multiplication, which is the most important operation in   
elliptic curve cryptography. Here we show that  the 
advantage of this representation is that all point 
doublings and quadrupling can be replaced by faster 
point halving while maintaining the tripling operations. 
For binary fields, the approach requires only about half 
the number of the inversions, one-third of the number of 
squaring, and a fewer number of multiplications 
compared with the scalar multiplication using the 
original MBC(multi-base chain). We modify the mixed 
powers of 2, 3 and 7 proposed in [15] by representing the 
scalar by a new multi-base chain involving 
monotonically decreasing powers of 1/2, 3 and 7.  In this 
paper, we propose a new multi-base chain representation 
with bases 1/2, 3 and 7 for the incorporation of point 
halving in scalar multiplication. With this method, we 
remove point doubling, quadrupling and use point 
halving instead, while maintaining the tripling and 
septupling points operations.  Implementation of this 
method of scalar multiplication shows that our approach 
leads to a lower complexity in computing scalar 
multiplication. In the next paragraph we provide details 
of implementation of point halving. 
 Initially point halving was proposed independently by 
Knudsen [12] and Schroeppel [17]. It is the reverse 
operation of point doubling. If all the point doublings 
required in the traditional double-and-add method are 
replaced by the faster point halving operation, the 
computation speed could be faster up to 39% [12] and 
50% [17].  A detailed analysis of the computational 
complexity of point halving was made in [10].  
Incorporating these inputs  we have proposed a new and 
much faster algorithm than the other classical 
approaches. In the following table the operating cost of 
different mathematical operations performed in an  
elliptic curve are shown, this we have calculated when  
[i] the curve is described on a binary field and  
[ii] when the curve is described on a prime field ( qF ) of 
order q.  
To denote cost of field operations, we will use [I], [S] 
and [M] to denote the cost of one inversion, one squaring 
and one multiplication respectively. We  neglect the cost 
of field additions in comparison to cost of other 
operations which are much more than the cost of 
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additions also further we neglect the cost of squaring in 
case the curve is defined over a binary field.  
For computing the scalar multiplications over binary 
finite fields, the required curve operations can be 
calculated as ia  doubling, ib  tripling and ic  septupling, 
using the same. The number of curve additions is the 
same as the number of terms in the chain. Whenever the 
components of the binary and ternary are not zero, 
double-and-add and triple-and-add operations are used 
instead of curve addition. In some cases the average 
number of terms in our algorithm is more than the 
number of terms in the original multi-base algorithm, but 
our method still costs less than the original algorithm.  
                                                                  

             Table1. Cost for different Operations 

 S. No Operations Binary field cost
Prime Field  

Costs 

1 QP +  MSI 211 ++  MSI 211 ++
2 2P 1I + 1S + 2M 1I+1S + 2M 

3 2P+Q 1I+2S + 9M 1I+2S + 9M 

4 3P 1I+4S + 7M 1I+4S + 7M 

5 3P+Q 2I+3S + 9M 2I+3S + 9M

6 4P 1I+5S+8M 1I+5S+8M

7 5P 1I+5S+13M 10S+15M

8 7P 3I+7S+18M - 

                                      

The point halving operation is incorporated in to the new 
MB (multi-base) chain to achieve faster scalar 
multiplication. The paper shows that the advantage of 
this representation is that all point doublings required in 
the original chain point doubling and quadrupling can be 
replaced by faster point halving while maintaining all the 
tripling operations. For binary fields, the approach 
requires only about half the number of the inversions, 
one-third of the number of squaring, and a fewer number 
of multiplications compared with the scalar 
multiplication using the original DB chain and multi-
base (MB) chain representation.  
6.1 Point Halving Algorithm Implementation for 

MBNR 

A careful analysis of elliptic curve point multiplication 
methods that use the point halving technique of Knudsen 
and Schroeppel, and have compared these methods to 
traditional algorithms that use point doubling and 
tripling. The performance advantage of halving methods 
is evident in the case of point multiplication kP .   
  

 

 

 

ALGORITHM:  Point Halving Scalar 

Multiplication 

Input: An integer ∑ =
= m

i
cba

i
iiidk

1
732 , 

}1,1{−∈id   

And such that  
0...321 ≥≥≥≥ maaaa ,

0...321 ≥≥≥≥ mbbbb  ,  

0...321 ≥≥≥≥ mcccc  , and a point 

)( 2mFEP∈ . 

Output : the point )( 2 mFEkP ∈   

                 
PdZ 1←

 

                   for 1,...,1 −= mi  do  

                      

1

1

1

+

+

+

−←
−←
−←

ii

ii

ii

ccw
bbv
aau

 

            if  0=u then  

                     ZZ w7←  

            if 0≠v  then  

                   PdZZ i
v

1
1 )3(3 +

− +←                   

// TA used  

                        else 

                    PdZZ i 1++←                          

                       else 

PdZZ
ZZ

Zz
ZZ

i

u

v

w

12
1

1
2
1

)(
)(

3
7

+

−

+←
←

←
←

 

                               return Z 

  

 In order to implement this we first multiply the scalar k 
with a large power of 2, say,  q2 , where q2  is 
considered as a value around the field size. Next we 
calculate kq.2  remainder pmod (modulo)  denoted as 

'k as given in equation (10). 
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pkk q mod2'=                                                  (10) 
Then we obtain the MB chain of 'k  with powers of 2 , 3 
and 7  in the form of increasing binary exponents but 
decreasing ternary and septenary exponents. Some more 
steps (as explained in next paragraph) can yield the 
following form of representation of  k as given by    

∑
∑ −= === pd

dkk iii

iii
cbaq

iq

m

i
cba

i
q mod73)(

2
732

2
' )(

2
11 '

'

,  (11)  

where  pkk q mod2'= , }1,1{ −∈id , ...321 aaa ≤≤ , 

...321 ≥≥≥ bbb and ...321 ≥≥≥ ccc  
This method will return the terms in the order from the 
highest power of 1/2 to the lowest power of 3 and 7. 
Here we reverse the terms i.e. the last terms becomes the 
first term, and then the expression become the desired 
one multi-base chain with the binary ternary exponents. 
In the following table we have taken different prime 
numbers.  Some   examples implementing this algorithm 
are given in the Table 2 . Two near by prime numbers k  
and p are chosen, then k is multiplied   with a suitable 
power q of 2 i.e. q2 and finally pkk q mod2'=  is 
calculated, finally the multi-base representation of 'k  is 
obtained using the already described algorithm. It is 
interesting to observe that in some cases the 
representation consist of  only four terms. 
                             Table.2 

q K p kk q m2'=
 

Multi Base chain of 'k  

2
3 

4,0
12,
174 

4,012
,193 

552,646 36243361 732732732 ++
+ 

0012029 732732 +  
2
4 

4,0
12,
174 

4,012
,193 

1,109,12
3 

38344450 732732732 ++
 

0015 732+  
2
5 

4,0
12,
174 

4,012
,193 

2,201,86
2 

39345451 732732732 ++
 

0114 732+  
2
6 

4,0
12,
174 

4,012
,193 

407,542 ++ 311237431 32732732
 

00160113 732732 +  
 

Finally we multiply the multi-base representation of 'k  

by q2
1  , in order to make all the binary exponents 

negative but with decreasing magnitude. The ternary and 
septenary exponents are unaffected and are all positive 
or zero with decreasing magnitude. This is actually a 
new multi-base chain with decreasing powers of 1/2,3 
and 7 with value equal to k. This representation for 
numbers in the column 3 of previous Table2  are given 
in Table3       
                                                           

                           Table3. 

kk q mo2'=
 

Point Halving  Multi Base chain of k  

552,646 1317
2
12420

2
13622

2
1 73)(73)(73)( ++

 
0011

2
10214

2
1 73)(73)( ++  

1,109,123 1316
2
13420

2
14524

2
1 73)(73)(73)( ++

 
009

2
1 73)(+  

2,201,862 1316
2
13420

2
14524

2
1 73)(73)(73)( ++

 
0111

2
1 73)(+  

407,542 0315
2
12319

2
14325

2
1 73)(73)(73)( ++

 
0010

2
10112

2
1 73)(73)( ++  

 

    For implementing the scalar multiplication we use a 
recursive formula for the fast computation of scalar 
multiplication using  following equation for recursive 
calculations.  

                     11 =K , ii
wvu

i dKK += −1732 with

,2≥i  }1,1{−∈id
  

Now we use this recursive formula for   implementing 

the point halving  

 ii
wvu

i dKK += −12
1 73)(   with }1,1{−∈id

  
As an example for illustration of this algorithm we 

consider computing 2201862P. We first develop the 

multi base chain as given below. 

                
0114139345451 732732732732862,201,2 +++=  

Now we develop the halving chain for the same number 
with the help pf the algorithm. The point halving chain 
developed is given below. 
 

0111
2
11316

2
13420

2
14524

2
1 73)(73)(73)(73)(862,201,2 +++=

 

After using the recursive formula we can obtain the  
following equation. 

]1]1]1[[[ 4

11

4

21

5

12

11 2
73

2
73

2
73

2
3 +++  

 Method of calculating cost of  calculating 2201862P in 
different iterations using point halving     
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                                     Table 4 

i  K d u v w 

1 1 1 0 0 0 

2 1116
21 +K  1 4 1 1 

3 1216
147 +K  1 4 1 2 

4 1332
63 +K  1 5 2 1 

5 142048
3 +K  1 11 1 0 

 

With the help of the algorithm developed in this paper 
we can observe that the cost of the k.P is much less, if 
we compare with the previously developed methods. In 
this method the number of iterations decreases and is  
more efficient than the other  methods proposed earlier. 
Implementation show that for binary fields, our approach 
requires only about half the number of inversions, one-
third the number of squaring, and a slightly fewer 
number of multiplications when compared with the 
scalar multiplication using the multi-base chain 
representation.  Finally, Table 4 summarizes that the cost 
of field operations optimize under this technique. 
 
7. CONCLUSIONS 
We have presented a  scalar multiplication that uses the 
new point halving method to reduce the number of 
required terms in the scalar expansion. The scalar 
multiplication methods based on halving are straight 
forward to implement, although some extra static storage 
(per field) is required over methods based on doubling 
and tripling. The performance advantage of point halving 
methods is clearest in the case of point (scalar) 
multiplication kP ,  which is  used in speeding up elliptic 
curve arithmetic. We have presented a scalar 
multiplication that uses the new multi-base chain method 
to reduce the number of required terms in the scalar 
expansion. This method significantly improves the 
MBNR algorithm and reduce the cost of field operations. 
The main procedure in the new algorithm used is the   
EC point halving and halve-and-add operations, which 
cost less, instead of using elliptic curve point doubling 
and double-and-add operations. 
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